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Two coupled problems are investigated: a complete description of long-wave vortex
ring oscillations in an ideal incompressible fluid, and an examination of sound
radiation by these oscillations in a weakly compressible fluid.

The first part of the paper relates to the problem of eigen-oscillations of a thin vortex
ring (µ' 1) in an ideal incompressible fluid. The solution of the problem is obtained
in the form of an asymptotic expansion in the small parameter µ. The complete set of
three-dimensional eigen-oscillations and axisymmetric modes (two-dimensional oscilla-
tions) is obtained. It is shown that, unlike the vortex column oscillations which have
the form of simple angular harmonics, the majority of eigen-oscillations of a thin
vortex ring have a more complex form which is a combination of two harmonics in the
leading approximation. This leads to dramatic changes in the efficiency of sound
radiation produced by modes of the vortex ring in comparison with the corresponding
modes of the vortex column.

In the second part of the paper the solution obtained is used to investigate the
process of sound radiation by vortex perturbations in a weakly compressible fluid. The
vortex ring eigen-oscillations are classified according to their sound radiation efficiency.
It is shown that the modes with the dimensionless frequency ωE 1}2 radiate sound
most efficiently. They are two isolated modes, two infinite families of Bessel modes and
a set of axisymmetric modes. The frequencies of these modes are in the interval ∆ω¯
O(µ).

The results obtained are compared with known experimental data on acoustic
radiation of a turbulent vortex ring. Within the limits of the theory derived an
explanation of the main characteristics of sound radiation is presented.

1. Introduction

The problem of vortex ring oscillations in an ideal incompressible fluid has attracted
continuous interest starting from the first solutions obtained in the last century (Kelvin
1867; Thomson 1883) as applied to the vortex theory of an atom. Owing to the extreme
complexity of the problem all theoretical works on this subject have been restricted to
the case of a thin vortex ring (µ' 1, µ is the ratio of the vortex cross-section to the ring
radius). However, even for this case only those eigen-oscillations are obtained which
have a structure that allows the task to be simplified still more.

The main approaches developed in this problem will now be summarized.
The situation seems to be the most simple for axisymmetric oscillations, which

reduces the problem to an evaluation of the disturbed vortex boundary only. This
reduction permits both small (Basset 1888; Kopiev & Leontiev 1987) and nonlinear
disturbances (Moore 1980) to be investigated.

For short-wave oscillations in the azimuthal angle θ (Widnall & Tsai 1977) the
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wavelength is an additional small parameter which permits the neglect of the mutual
influence of disturbances in ring regions distant from each other. A careful analysis of
the physical mechanism of short-wave instability is given by Saffman (1992).

The presence of the small parameter µ underlies two well-known approaches in
which the vortex ring oscillation problem is replaced by the problem corresponding to
the limit µ¯ 0. This limit can be realized in two different ways: first it corresponds to
finite radius of the ring and zero size of the core cross-section, that is the flow structure
inside the vortex core is neglected; secondly it corresponds to infinite radius of the ring
and finite size of the core cross-section, that is the mean curvature of the undisturbed
ring is neglected.

The first case corresponds to the localized induction approximation (LIA) (Hama
1963) or a more precise one (Crow 1970; Widnall, Bliss & Zalay 1971; Klein & Majda
1991). In both these approximations the self-induced velocity at some section is
calculated as if the whole vortex were a filament of infinitesimal thickness except the
near section considered where the flow structure is assumed to be coincident with the
flow structure of the osculatory steady vortex ring. In the problem of vortex ring
oscillations these solutions are reported to describe the evolution of the mean line only
(bending mode). However, as is shown in the present work, the mean line evolution can
be determined not only by its own form but by the structure of the disturbances inside
vortex core, since a particular disturbance of the mean line may correspond to quite
different modes of the vortex ring.

In the second case the limit µ¯ 0 is achieved for a constant core cross-section
(Basset 1888; Ladikov 1960). This limit corresponds in reality to replacing the vortex
ring by a vortex column. A comprehensive analysis carried out in the present paper
shows that the vortex ring oscillations have a frequency spectrum which is similar to
a vortex column spectrum. However, the vortex column approximation gives an
incorrect form for the eigen-oscillations.

In the first part of the paper a complete description of long-wave oscillations of a
thin (µ' 1) vortex ring is presented (§§3 and 4). For a careful statement of the problem
of vortex ring oscillations the choice of the stationary flow giving the most simple
solution of this cumbersome problem is important. For thin vortex rings there is an
infinite set of vorticity distributions in the core for which the flow is steady in the
system of coordinates attached to the vortex ring (Fraenkel 1970). The most simple of
them is the uniform vorticity distribution for which the vorticity vector amplitude is
proportional to the distance from the vortex symmetry axis (Ω}ξ¯ const). The
steady flow with such a vorticity distribution exists not only for thin (µ' 1) rings
but also for rings with arbitrary values of µ (Norbury 1973) including Hill’s vortex
(Milne-Thompson 1960). Note that for a uniform vorticity distribution the period of
fluid particle orbits is not a constant over the whole vortex core cross-section (non-
isochronism). Non-isochronism of fluid particle orbits can be readily seen in an
example of the limiting case – Hill’s vortex, for which the period of rotation tends to
infinity on approaching the vortex boundary. The non-isochronism of fluid particles
leads to the appearance of a critical layer and the emergence of continuous spectrum
disturbances. Such a situation does not appear in the case of a vortex column where
the conditions of isochronism and of vorticity uniformity are identical. However, for
a thin vortex ring the vorticity distribution fulfilling the condition of isochronism is
close to the uniform one, differing from it only by terms of O(µ#) (§4.1).

The vortex ring with uniform vorticity is used in this paper to examine axisymmetric
disturbances. This steady flow is most convenient because in this case a vortex
boundary displacement does not produce vorticity disturbances inside the vortex core.
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Axisymmetric oscillations are considered in §3 where, beside the well-known discrete
mode, the modes of the continuous spectrum are also considered. However, for three-
dimensional oscillations consideration of continuous spectrum disturbances is too
cumbersome a task. Thus the isochronous vortex ring which has only a discrete
spectrum is used for three-dimensional oscillations because this vortex ring is the
simplest one from this standpoint.

To illustrate the main characteristics of vortex ring oscillations, in §2 the well-known
problem of cylindrical vortex oscillations is briefly considered.

A new procedure for three-dimensional oscillation prediction is devised. The
problem of obtaining eigen-oscillations is divided into three more-simple ones (§4.4).
First, a set of basic disturbances is constructed in which eigen-oscillations are
expanded. Secondly, the Biot–Savart integral is calculated for each basic disturbance.
Thirdly, the system of algebraic equations is solved which determines forms of the
eigen-oscillations and eigen-frequencies. With such an approach it is possible to obtain
for each approximation both the form of boundary disturbances and the disturbance
structure inside vortex and to estimate the value of the terms rejected.

To identify three-dimensional eigen-oscillations of the vortex ring we use three
integers : l, n, j where the first characterizes frequency and is called a frequency number,
the second characterizes the number of wavelengths fitting into the ring mean line and
is called the azimuthal number, and the third, called a radial number, characterizes the
oscillation structure in the core section for Bessel modes ( j& 1), and is assumed to be
equal to zero for isolated modes. The form of the isolated modes of the vortex ring
(mode (l, n, 0)) to the leading approximation has the form of the harmonic exp [i(l1)ψ]
in the vortex core section, i.e. it appears to be close to the corresponding oscillations
of a cylindrical vortex. Bessel oscillations of the vortex ring, in contrast to the vortex
column, to the leading approximation appear to be a linear combination of two
ψ-harmonics with adjacent numbers l and l1. This leads to dramatic changes in the
efficiency of sound radiation produced by these modes of the vortex ring in comparison
with the corresponding modes of the vortex column.

The solutions obtained (axisymmetrical and three-dimensional modes) are a
complete typical set of disturbances. For long time (T! 1}µ#) these disturbances will
describe the evolution of the initial disturbances of any vortex ring with steady vorticity
differing from uniform or isochronous values by terms of O(µ#) (§4.7).

The solutions obtained in the first part of the paper (§§3 and 4) are used in the second
part (§5) to describe the sound fields generated by vortex rings and to classify eigen-
oscillations according to their sound radiation efficiency. As is known, the unsteady
movement of vortices in a compressible fluid is accompanied by a quadrupole sound
radiation (Lighthill 1952). If the characteristic flow Mach number is small and vorticity
is localized in some region with a characteristic size much less than the sound
wavelength, then the sound field will be expressed through the unsteady velocity field
which can be calculated with the approximation of an incompressible fluid. For
calculation of the sound field generated by vortices it is convenient to connect the
sound field with only that flow part where the vorticity differs from zero (Powell 1964).
The most convenient expression for the sound field which links the unsteady vorticity
field and the sound generated in a linear manner was obtained by Mo$ hring (1978). An
alternative derivation of Mo$ hring’s expression is discussed in Obermeier (1979),
Kambe (1986), Kopiev & Leontiev (1987), and Powell (1995). Mo$ hring (1978)
calculated the sound field generated by two leap-frogging vortex rings. It was the first
model example of a localized three-dimensional aerodynamic sound source in
unbounded flow, which was based on the three-dimensional dynamics of the vorticity.
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A solitary vortex ring in unbounded flow can also be a source of sound. The first
expression for sound radiation by a solitary vortex ring oscillations was obtained by
Kopiev & Leontiev (1987) for the most simple case of its axisymmetric oscillations.
Expressions for sound radiation by bending and bulging modes are presented by
Kopiev (1992). Kopiev & Chernyshev (1993) briefly consider the isolated modes for a
uniform vortex ring (including an axisymmetric one) and the sound generated from
them. However, they did not pay attention to the presence of the continuous spectrum
in this case. Two families of Bessel modes with n¯ 1 and n¯ 2, which are the most
interesting from the point of view of sound radiation, are not considered anywhere.

The main problem arising in calculation of the sound field generated by vortex ring
oscillations consists in the following. The vortex ring eigen-oscillation are presented as
a sum of the harmonics exp (imψ). It turns out that the same contribution into the
sound field can be made by various ψ-harmonics which have different orders of
magnitude in µ. Therefore a careful analysis of the contribution of each term of the
eigen-oscillations to the sound field is required to provide an assurance that all the
necessary terms are taken into account.

To this end, Mo$ hring’s expression for the quadrupole moment is transformed in this
paper. In this expression an integral over the vortex volume is transformed into the
integral over the vortex surface (§5). Such a representation permits the evaluation in
a relatively simple manner of the contribution of various harmonics to the sound field.
It is shown that for simultaneous excitation of all modes of the vortex ring only the
oscillations with l¯ 1 (the frequency near the value ω¯ 1}2) will be found in the far
acoustic field. They are axisymmetric modes, two isolated modes (1, 1, 0), (1, 2, 0) and
an infinite number of Bessel modes of the type (1, 1, j) and (1, 2, j), j& 1.

Finally, (§6) the results obtained are compared with the known experimental data on
acoustic radiation of a turbulent vortex ring. Within the limits of the theory derived an
explanation of the main characteristics of sound radiation is presented.

2. Oscillations of a vortex column

In the limiting case of RU¢, a¯ const (R is the vortex ring radius, a is the radius
of the vortex core cross-section) the vortex ring flow corresponds to that of a
cylindrical vortex. Small oscillations of a cylindrical vortex with a constant vorticity Ω

!
and without axial flow (vortex column) have been obtained by Kelvin (1880) and are
well-known (Saffman 1992). Nevertheless, a short review of these oscillations is given
in this Section, since the forms and frequencies of the vortex column oscillations are
a starting point in the examination of the vortex ring oscillations.

The eigen-oscillations of the cylindrical vortex have the form

�i¯ �i(ρ) eimφ+iks−iωt, m¯ 0, 1, 2,… , (2.1)

where ρ,φ, s are the cylindrical coordinates with the axis e
s
along the vortex axis. The

possibility of looking for the solution in this form is associated with the cylindrical
vortex symmetry relative to translations along s and rotations around e

s
.

Only cylindrical vortex oscillations with k& 0 will be considered here. The solutions
with k! 0 can be easily obtained from the solutions with k" 0 through substitution
of �sU®�s and kU®k in the amplitudes �i(ρ). In the following equations
dimensionless variables are used. The time scale is Ω−"

!
. The length scale is a.

The dispersion equation for cylindrical vortex oscillations has the form

ω«kJ
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1ω«
¯ 0, (2.2)
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(a) (b) (c)

F 1. Boundary disturbance shapes of a cylindrical vortex. (a) Bessel modes and an isolated
mode at m¯ 2; (b) bulging mode; (c) bending mode.

where ω«¯ω®m}2.
This equation is valid for arbitrary k ; however, below we shall consider only the

long-wave case k' 1. At fixed m and k' 1 (2.2) has solutions in two ranges : if
k(1®ω«#)"/#}ω«¯O(1) and if k(1®ω«#)"/#}ω«' 1, i.e. the long-wave oscillations
(k' 1) of the cylindrical vortex are concentrated in two frequency ranges : ω«' 1 and
ω«¯O(1). In the first case ω«' 1

ω
j
¯

m

2
³

k

a
j

O(k#), j¯ 1, 2,… , m¯ 0, 1, 2,… , (2.3)

where the a
j

are the zeros of the Bessel function J
m
(a). The corresponding eigen-

oscillations will be referred to as Bessel modes. The eigen-frequencies ω
j
of these modes

have the point of accumulation ω¯m}2. In the second case ω«¯O(1) (2.2) has one
more solution for each m1 0:

ω¯®
k#

4 0ln
2

k
®C

1

41O(k% lnk), m¯ 1, (2.4)

ω¯
m®1

2
®

k#

4(m®1) (m1)
O(k$), m& 2, (2.5)

where CE 0.58 is Euler’s constant (Abramowitz & Stegun 1965). The corresponding
eigen-oscillation will be referred to as an isolated mode.

It follows from (2.1) that at any moment of time the disturbed vortex boundary has
an m-fold form at each section s¯ const. This form rotates around the cylinder axis
at an angle depending on s according to the expression exp (imφiks) (figure 1).

For Bessel modes (2.3) the velocity disturbances inside the vortex are determined by
Bessel functions and have an oscillating form in the coordinate ρ. The number of these
oscillations in ρ increases as j increases. Bessel modes with m¯ 0 are characterized by
periodical variations of the vortex cross-section area along the axis e

s
. The vortex

boundary in this case has a specific bulging form (figure 1b). In this connection, the
Bessel mode with m¯ 0 is referred to as a bulging mode.

The disturbance form for an isolated mode (2.4), (2.5) presented in figure 1(a, c) is
of power type in the coordinate ρ inside the vortex. The isolated mode with m¯ 1 is
called the bending mode since in the leading approximation this oscillation reduces to
a periodical displacement of the vortex mean line (figure 1c).
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F 2. Arrangement of the eigen-frequencies of the cylindrical vortex oscillations near ω¯ l}2; (a)
k" 0; (b) k¯ 0. E, Bessel modes at m¯ l ; D, an isolated mode at m¯ l1.

The important distinction between Bessel and isolated modes concerns the character
of the velocity disturbance outside the vortex. For the isolated oscillations the
disturbance amplitude outside the vortex has the same order of magnitude as the
displacement amplitude of the vortex boundary. Unlike them, Bessel oscillations turn
out to be localized for the most part inside the vortex because the disturbance
amplitude outside the vortex appears to be of O(ω«) relative to the amplitude of
boundary displacement. This is connected with the fact that according to (2.3) the
phase velocity of the vortex boundary disturbances for Bessel oscillations appears to
be close to the phase velocity of the main flow, i.e. it is as if these disturbances adhere
to the main flow and only faintly disturb the external region.

This means that from the standpoint of sound radiation by a cylindrical vortex the
most interesting modes are isolated ones. For a vortex ring, as will be seen below, the
situation abruptly changes.

At k¯ 0 the isolated mode reduces to the well-known oscillations of a plane circular
vortex (Lamb 1932) with the frequency ω¯ (m®1)}2. The frequencies of all Bessel
modes turn out to equal ω¯m}2, i.e. these modes degenerate. In this case any vortex
core disturbance of the type Ωρ ¯ 0, Ωφ ¯ 0,

Ωs¯ 9 f(ρ)®δ(ρ®1)&"

!

f(ρ) ρm+"dρ: eimφ,

where f(ρ) is an arbitrary function, will represent an eigen-oscillation with the
frequency ω¯m}2. Despite the fact that the vorticity disturbance in the core (the first
term) is accompanied by a boundary displacement with an amplitude of O(1) (the term
with the δ-function), such oscillations produce no disturbance at all in the external
region (ρ" 1) since their phase velocity exactly equals 1}2, i.e. these disturbances
exactly adhere to the main flow. The set of these modes and of the isolated modes
is the complete basis of disturbances in which any two-dimensional initial vortex core
disturbance can be expanded. Owing to the triviality of the degenerate modes in the
case of cylindrical vortex oscillations, these modes are usually not discussed.

The solutions with m%®1 are easily obtained from the solutions with m& 1 with
the help of the operation of complex conjugation of the amplitudes �i(ρ) and
simultaneous substitution of �sU®�s and of mU®m, ωU®ω in the amplitudes �i(ρ).

Considering the whole set of eigen-oscillations with various values of m, it is easy to
see that the eigen-frequencies of the cylindrical vortex are localized only near the values
ω¯ l}2 (l¯ 0,³1,³2,…). Modes of two types are available about any such value:
an infinite family of Bessel modes which have the form of the harmonic exp (imφ) with
m¯ l and the single isolated mode which has the form of the harmonic with the next
number m¯ l1 (figure 2).



Vortex ring eigen-oscillations as a source of sound 25

As will be shown below, the vortex ring oscillations have a similar spectrum. All the
eigen-frequencies are localized near ω¯ l}2 and the set of eigen-oscillations is divided
into two families which by analogy with the cylindrical vortex will be called Bessel
modes and isolated modes.

Note that the cylindrical vortex eigen-oscillations with a given value k' 1 can be
classified both by the number m of the harmonic exp (imφ) ((2.3)–(2.5)) and by the
number l characterizing the eigen-frequency ωE l}2 (figure 2). There is only the second
possibility for the vortex ring, since each vortex ring eigen-oscillation has the form of
the sum of the harmonics exp (imφ) with different m, unlike the cylindrical vortex eigen-
oscillation which has the form of a separate harmonic in φ.

3. A vortex ring with a uniform vorticity distribution and its axisymmetric
oscillations

The vortex ring is a localized vortex characterized by a self-induced movement with
constant velocity along its axis. In this section we consider the simplest vorticity
distribution over the core cross-section, assuming that the magnitude of the vorticity
is proportional to the distance to the ring symmetry axis. For such a vorticity
distribution there is a steady state in the coordinate system moving with the ring. Note
that the steady flow exists not only for rings with thin cores (Fraenkel 1970) but also
for thick rings (Norbury 1973) up to the limiting state corresponding to Hill’s vortex
(Milne-Thompson 1960). In the present work only thin rings (µ' 1) are considered.

This stationary flow appears to be the most convenient for consideration of
axisymmetric oscillations of the vortex ring, because the displacement of the vortex
boundary produces no vorticity disturbances inside the core in this case. The isolated
axisymmetrical oscillations of a vortex ring with uniform vorticity reduce to the vortex
boundary disturbances only. These oscillations have been discussed previously. Thus
Moore (1980) found a solution which was a generalization of a cylindrical vortex with
an elliptical section (Kirchhoff’s vortex) for the case of a vortex ring. This solution with
small eccentricity corresponds to that of the axisymmetric modes. The complete family
of isolated axisymmetric modes and the sound field for the main sound-generating
mode were obtained by Kopiev & Leontiev (1987).

Isolated oscillations seem not to comprise the whole set of axisymmetrical
disturbances of the vortex ring. Like the case of a vortex column (§2) there exists a set
of vortex ring oscillations describing the vorticity disturbance inside the core. However,
unlike the vortex column oscillations, the frequencies of which degenerate to the point
ω¯m}2, the corresponding oscillations for the vortex ring with uniform vorticity
occupy the frequency range of ω}l¯ (Vψ

!min
,Vψ

!max
). They are the disturbances of the

continuous spectrum.
The appearance of the continuous spectrum is associated with non-isochronism of

the vortex ring with uniform vorticity because the period of fluid particle rotation over
steady flow streamlines in the core section is not a constant (§3.1). This seems to be
surprising because the flow in a vortex column (the two-dimensional analogue of a
vortex ring with uniform vorticity distribution) is obviously isochronous. However, the
non-isochronism of fluid particle orbits can be readily seen in an example of the
limiting case – Hill’s vortex, for which the period of rotation tends to infinity on
approaching the vortex boundary. The continuous spectrum disturbances are
considered in §3.3.
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F 3. Systems of coordinates : x, y, z, Cartesian; z, ξ,θ, cylindrical ; r, θ,χ, spherical ;
ρ,φ, polar (in the core section) ; a}R¯µ.

3.1. Steady flow and coordinate system σ, ψ, s

Consider the cylindrical coordinates ξ, θ, z with the axis e
z
along the ring axis and the

polar coordinates ρ,φ in the core cross-section with the centre in the stagnation point
(figure 3). These coordinates are connected by the relations ξ¯R®ρ cosφ and
z¯ ρ sinφ, where R is the distance between the ring axis and the stagnation point. We
also use the coordinate s, connected to the angular coordinate θ by the equation s¯Rθ.

For a uniform vorticity distribution the magnitude of the vorticity is proportional
to the distance to the ring symmetry axis, that is Ω

!
¯ e

s
Ω

!
ξ}R (Ω

!
¯ const). The

contravariant s-component of this vorticity field is Ωs

!
¯Ω

!
. The steady velocity field

V
!

can be written as V
!
¯V¢U

!
where V¢ is the flow velocity at infinity ; the

velocity field U
!

decreases to zero at infinity and is determined according to the
Biot–Savart law:

U
!
¯¡¬

1

4π&
Ω

!
(r«)

rr®r«r
dr«.

For a thin vortex ring the problem includes the small parameter µ which is the ratio
of the core cross-section dimension a to the ring radius R, µ¯ a}R. Since the core
boundary is close to circular and differs from it by terms of O(µ#), the value a is
determined as the radius of the circle with area πa#, exactly equal to the core section
area.

The contravariant components of the steady velocity field inside the vortex ring core
and the core boundary shape are as follows:

Vρ

!
¯®µΩ

!

5ρ#

16a
sinφµ#Ω

! 9038 ln
8

µ
®

15

641 ρ®
ρ$

16a#
: sin 2φO(µ$), (3.1a)

Vφ

!
¯

Ω
!

2
µ#Ω

!

5

16
®µΩ

!

7ρ

16a
cosφµ#Ω

!9038 ln
8

µ
®

15

641®
ρ#

32a#
: cos 2φO(µ$),

(3.1b)

ρ¯ a91
5

8
µ cosφ®

25

256
µ#0161

256
®

3

8
ln

8

µ1µ# cos 2φ:O(µ$), (3.2)

where, for brevity, the expression O(µn) is used to indicate terms of order µn lnµ and
µn.
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Note that for a description of the stationary flow in a vortex ring the other polar
coordinates ρ

c
, φ

c
can be also used with the origin at the ring cross-section centre which

is closer to the ring axis than the stagnation point by the distance ∆ξ¯ &

)
µO(µ$)

(Fraenkel 1972). Equations (3.1), (3.2) expressed in coordinates ρ
c
, φ

c
at a¯ 1 exactly

coincide with that used by Widnall & Tsai (1977). In particular, in these coordinates
the boundary shape (3.2) is rather simple and is expressed as

ρ
c
¯ a91µ#0®3

8
ln

8

µ


17

321 cos 2φ
c
O(µ$): .

Further, we define the coordinates σ, ψ in the core cross-section of the ring, which
slightly differ from the coordinates ρ, φ, respectively. We require that for the
coordinates σ(ρ,φ) and ψ(ρ,φ) the following conditions be fulfilled:

Vσ

!
¯ 0, Vψ

!
¯Vψ

!
(σ), rg r"/#¯σ, (3.3)

where Vσ

!
,Vψ

!
are the contravariant components of the velocity field, g

ij
is the metric

tensor of the coordinate system σ,ψ, s.
The lines σ¯ const correspond to the streamlines because Vσ

!
¯ 0. Note that the

coordinate transformation ρ,φUσ,ψ is different from the Fraenkel (1970) trans-
formation of the type ρ,φU f(ρ,φ),φ, where the function f also appears to be constant
on the streamlines. The present work additionally uses transformation of the angular
variable φUψ(ρ,φ) which allows consistency of the component Vψ

!
on the streamlines

to be obtained. The condition rg r"/#¯σ is chosen because it gives the simplest forms
of differential operators in the coordinate system σ,ψ, s.

In the following equations dimensionless variables are used. The time scale is Ω−"
!

.
The length scale is selected so that the vortex boundary (3.2) corresponds to the line
σ¯ 1: just the length scale a[1 &

"'
µ#O(µ$)] meets this condition.

Making use of the equations

Vσ

!
¯

¥σ
¥ρ

Vρ

!


¥σ
¥φ

Vφ

!
, Vψ

!
¯

¥ψ
¥ρ

Vρ

!


¥ψ
¥φ

Vφ

!
, rg(ρ,φ, s)r"/#¯

¥(σ,ψ)

¥(ρ,φ)
rg(σ,ψ, s)r"/#

where Vρ

!
and Vφ

!
are determined by (3.1), rg(ρ,φ, s)r"/#¯ ρ(1®µρ cosφ), we get

σ¯ ρ®µ
5

8
ρ# cosφµ#9038 ln

8

µ
®

15

641 ρ®
1

256
ρ$: cos 2φµ#

45

256
ρ$O(µ$), (3.4a)

ψ¯φµ
7

8
ρ sinφµ#90®3

8
ln

8

µ


15

641
11

128
ρ#: sin 2φO(µ$). (3.4b)

The surface σ¯ 1 corresponds to the vorticity region boundary. The covariant
components of the normal vector to this boundary are expressed as:

n¯ (nσ, nψ, ns
)¯ (1&

%
µ cosψO(µ#), 0, 0). (3.5)

The metrical tensor of the coordinate system σ, ψ, s is presented in Appendix A. The
components of the steady velocity field (3.1) in these coordinates are as follows:

Vσ

!
¯ 0, Vψ

!
¯ "

#
®µ#

21

64
σ#O(µ$). (3.6)

This equation demonstrates that, in contrast to the cylindrical vortex with constant
vorticity, the vortex ring with uniform vorticity turns out to be the non-isochronous,
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(a) (b)

F 4. Boundary disturbance shape of axisymmetric modes at different phases (isolated mode
and continuous spectrum modes), l¯ 1: (a) half a ring; (b) the whole ring.

i.e. the time taken for fluid particle circulation in the vortex core on different
streamlines σ¯ const appears to be different. Now calculate the period of fluid particle
rotation on the streamlines : this is

T¯, dl

rV
!
rσ,s=const

,

where dl¯ (g
ij
dxidxj)"/#. Along the streamlines the length element dl¯ g"/#

ψψ dψ and the
velocity field module rV

!
r¯ (g

ij
Vi

!
V j

!
)"/#¯ g"/#

ψψ Vψ

!
. The result is

T¯ 2π}Vψ

!
(σ). (3.7)

Since for the flow examined Vψ

!
is function of σ, the rotation period is different on

different streamlines. However, this difference is of O(µ#), that is the vortex ring with
uniform vorticity differs slightly from isochronous flow.

3.2. Isolated axisymmetric oscillations

Consider first the isolated modes. The isolated axisymmetric oscillations of the vortex
ring (independent of θ) are the simplest because the problem in this case appears to be
two-dimensional. Such disturbances produce no vorticity inside the core and reduce to
the boundary displacement only. For these oscillations the vortex boundary
displacement σ¯ 1f(ψ) exp (®iωt) has the following form:

f¯ ei(l+")ψ®µ
2l3

4(l1)
ei(l+#)ψµ

2l1

4(l1)
eilψO(µ#), l¯ 1, 2,… . (3.8)

Thus, these oscillations, in the leading approximation, are (l1)-fold displacements
of the vortex boundary (figure 4). The eigen-frequency is

ω
!
¯

l

2
µ#9(6l $18l #14l3)

16l(l1) (l2)
®

21

64
(l1):O(µ$). (3.9)

3.3. Continuous spectrum of axisymmetric oscillations

To obtain the complete basis of oscillations of the form exp (®iωt) in which any initial
vortex core disturbance can be expanded it is necessary to find the oscillations which,
contrary to the isolated ones, are accompanied by vorticity disturbances inside the
vortex core. The linearized Helmholtz equation describing the vorticity disturbances is

®iωΩsVψ

!

¥Ωs

¥ψ
�σ ¥Ωs

!

¥σ
¯ 0, (3.10)

where �σ is the velocity disturbance connected with the vorticity disturbance by the
Biot–Savart law, Vψ

!
is determined by (3.3), Ωs

!
¯ 1 at σ% 1, Ωs

!
¯ 0 at σ" 1; Ωs is the

only vorticity disturbance component that is not zero.
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l/2

n = 0

F 5. The isolated mode frequency (D) and continuous spectrum for axisymmetric
disturbances.

The solution is found in the form

Ωs¯ δ(σ®σ
!
) eilψa(ψ) δ(σ®1), l¯ 1, 2,… , (3.11)

where σ
!
! 1. The first term in this expression is the vorticity disturbance of unit

amplitude inside the core on the streamline σ¯σ
!
. The second term is the unknown

displacement of the vortex boundary, corresponding to this core disturbance.
Substituting (3.11) into (3.10) and equating to zero the multipliers of two δ-functions
we get the equations

®ωlVψ

!
(σ

!
)¯ 0, (3.12)

®iωaVψ

!
(1)

¥a
¥ψ

®�σ

#
rσ="

¯ �σ

"
rσ="

, (3.13)

where �
"
and �

#
are the velocity fields produced at the boundary σ¯ 1 by the first and

the second terms of the vorticity (3.11) according to Biot–Savart’s law. Equation (3.12)
determines eigen-frequencies which depend on σ

!
,

ω¯ lVψ

!
(σ

!
). (3.14)

The frequencies of these oscillations are within the interval ω}l¯ (Vψ

!min
,Vψ

!max
) and

correspond to the continuous spectrum, the appearance of which is connected with the
non-isochronous character of the vortex ring with a uniform vorticity profile. The
location of the continuous and discrete spectra is presented on figure 5.

Equation (3.13) determines the response amplitude a(ψ) of the vortex boundary to
the disturbance produced by the δ-like vorticity located on the layer σ¯σ

!
. If the

right-hand side of the equation equals zero, this equation describes the vortex
boundary disturbance for isolated oscillations (3.8). Since the right-hand side is a sum
of different harmonics with frequency close to the eigen-frequency (3.9), the response
is of resonance character. Making use of Appendix B we easily get

a(ψ)¯C[ei(l+")ψµa
l+#

ei(l+#)ψµa
l
eilψO(µ#)], (3.15a)

a
l+#

¯®
2l3

4(l1)
, a

l
¯

2l1

4(l1)
®

σl+"
!

µC
, (3.15b)

C¯µ
(3l2)

8

σl+"
!

(1®σ#

!
)

ω®ω
!

, (3.15c)

where ω
!
and ω are determined by (3.9) and (3.14) respectively. In the case of a δ-like

vorticity on the critical layer (ω¯ω
!
), the amplitude of the boundary displacement

becomes infinite.
It is surprising that it is not the harmonic exp (ilψ) determining the form of vorticity

disturbances inside the core that has the maximum amplitude in the function a(ψ), but
the harmonic exp [i(l1)ψ]. Thus the oscillations (3.15), in the leading approximation
represent not the lth harmonic but the (l1)th one. The phase velocity of (l1)th
harmonic does not coincide with the flow velocity. Therefore, all the modes of the
continuous spectrum of the vortex ring disturb the external field and consequently can
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participate in the process of noise generation. We see the dramatic difference between
these oscillations and the corresponding oscillations of the cylindrical vortex at k¯ 0
(§2) which have the form of the harmonic exp (ilψ) and produce no disturbances in the
external field (ρ" 1) because they exactly adhere to the main flow.

Note that this feature associated with appearance of harmonics not adhered to
the main flow is also observed for three-dimensional modes of the vortex ring
considered below and this is their principal difference from the cylindrical vortex
oscillations, the majority of which are adherent, to the main approximation, to the
steady flow and slightly disturb the external region.

Finally in this section, the normalized boundary displacement of the axisymmetrical
modes are written as

f¯ ei(l+")ψ®µ
2l3

4(l1)
ei(l+#)ψµ 9 2l1

4(l1)
®

8(ω®ω
!
)

µ#(3l2) (1®σ#

!
): eilψO(µ#). (3.16)

The amplitude of the (l1)th harmonic in (3.16) is assumed to be unity for each mode.

4. The problem of three-dimensional vortex ring oscillations

Two main difficulties appear in the problem of three-dimensional oscillations of a
vortex ring. The first is associated with the selection of the steady flow. It was shown
in §3.1 that a vortex ring with a uniform distribution of vorticity is not isochronous.
The non-isochronism of fluid particles leads to the appearance of continuous spectrum
disturbances. The investigation of the continuous spectrum is a rather complex task.
Though two-dimensional (axisymmetric) disturbances of the continuous spectrum
were obtained in an analytical form in §3.3, consideration of the continuous spectrum
in a general case is outside the scope of this paper. Therefore, we investigate the three-
dimensional oscillations not of the vortex ring with uniform vorticity but of the
isochronous vortex ring for which the oscillation spectrum turns out to be purely
discrete. Such a vortex ring is constructed in §4.1.

The second difficulty is associated with the fact that for three-dimensional eigen-
oscillations it is unknown beforehand in what form the solution is to be found, although
it is easy to write this form in the cases of vortex column oscillations (§2) or vortex ring
two-dimensional (axisymmetric) oscillations (§§3.2 and 3.3). In particular, the use of
vortex column modes as the main approximation for three-dimensional vortex ring
modes appears to be unsatisfactory. Therefore, in the present work a method based on
the expansion of eigen-oscillations over some specially constructed set of the so-called
basic disturbances (§4.4) is developed. In this procedure the coefficients of the eigen-
oscillation expansion in basic disturbances and eigen-frequency are simultaneously
found from the boundary condition. It appears to be convenient for this purpose to
examine the task in terms of the displacement field ε (§4.2).

4.1. A steady �ortex ring with isochronous mo�ement of fluid particles

A vortex ring with a uniform vorticity distribution appears to be isochronous only for
two approximations in µ (§3.1). The isochronous condition is violated for the terms of
O(µ#). In a general case, to find the vorticity distribution satisfying the isochronous
condition is a complex task. However, for terms of O(µ#) it is easy to modify the
vorticity distribution considered in §3.1 to meet this condition.

It is known that for any vorticity distribution with Ωs

!
¯ const on the streamlines

there exists a steady thin vortex ring (Fraenkel 1970, theorem 3.1). Let us consider a
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vorticity distribution slightly different from the uniform one, Ωs

!
¯ 1∆Ω, where ∆Ω

is an arbitrary function of O(µ#), which is a constant on the streamlines. Obviously, in
the leading approximation this function has the form ∆Ω¯µ#F(ρ)O(µ$). We shall
demonstrate now that for such a vorticity distribution the coordinates σ and ψ found
from the condition (3.3) will differ from the coordinates (3.4) found for the uniform
vorticity distribution only by an amount of O(µ$). According to Fraenkel’s theorem,
a steady vortex ring does in fact exist with such vorticity distribution. This vorticity
field corresponds to the steady velocity field which differs from (3.1) by ∆Vρ

!
¯O(µ$),

∆Vφ

!
¯µ#g(ρ)O(µ$), where dg}dρ¯®F(ρ). This means that (i) the streamlines of

the flow examined will differ from the streamlines of the flow with a uniform vorticity
distribution by an amount of O(µ$), (ii) ∆Vφ

!
, in the leading approximation, is

independent of the coordinate φ. Therefore the coordinates complying with the
conditions (3.3) for different F differ in terms of O(µ$) only, i.e. are determined
by the expressions (3.4). Thus, the steady vorticity field in question has the form
Ωs

!
¯ 1µ#F(σ).
The function F(σ) is selected in such a way that the component Vψ

!
becomes constant

on all the streamlines. The function F(σ)¯ #"

"'
σ# corresponds to this condition. In this

case the steady fields of vorticity and velocity are as follows:

Ωs

!
¯ 1µ# #"

"'
σ#O(µ$), Vσ ¯ 0, Vψ ¯ "

#
, (4.1)

where coordinates σ, ψ are determined by (3.4).
According to (3.7) this flow will be isochronous in the vortex core. This flow is used

in the present work for the investigation of three-dimensional oscillations.

4.2. Displacement field in the problem of �ortex flow disturbances

The approach to a description of three-dimensional vortex ring linear disturbances in
this paper is based on using the displacement field ε(r) as the main function
(Chandrasekhar 1969; Drazin & Reid 1981). A small displacement of the fluid elements
from the points r to the points rε(r), ¡[ε¯ 0, gives the vorticity disturbance:

Ω¯¡¬(ε¬Ω
!
), (4.2)

where Ω
!
is the steady vorticity field. Equation (4.2) is the condition of the vortex line

freezing into the fluid element (Moffatt 1986).
The system of equations describing the displacement field evolution is

¥ε
¥t

¡¬(ε¬V
!
)®�¯ 0, (4.3a)

�(r)¯¡¬
1

4π&
¡«¬(ε¬Ω

!
)

rr®r«r
dr«, (4.3b)

where ¡«¯ ¥}¥r«, V
!
is the steady velocity field, � is the velocity disturbance. Equation

(4.3a) was first obtained by Drazin & Reid (1981). Equation (4.3b) is obtained by
substitution of (4.2) into the Biot–Savart law.

Let us consider the situation when vorticity is concentrated in a localized region of
the flow. In this case the system (4.3) is reduced to the form which allows the
construction of an efficient procedure for the vortex eigen-oscillation calculation.

It is well-known (Batchelor 1967) that the vector field a in a localized region M can
be determined from the normal component of the field a at the boundary Γ(M ) and
from curl a and diva over the whole region M.

Note that if the region is not simply connected, in order to determine the vector field
a unambiguously it is also necessary to specify the circulation of that field around a
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closed contour C not reducible to zero. But this condition is trivial for vortex ring
oscillations of the kind of exp (inθ).

Let the expression ¥ε}¥t¡¬(ε¬V
!
)®� be a and the vortex region be M. Then it

follows that (4.3a) is equivalent to the system of equations

¥
¥t

¡¬ε¡¬[¡¬(ε¬V
!
)]®¡¬(ε¬Ω

!
)¯ 0, r `M, (4.4a)

¡[ε¯ 0, r `M, (4.4b)

0¥ε¥t¡¬(ε¬V
!
)®�1[n¯ 0, r `G(M ), (4.4c)

where n is the normal to the surface Γ(M ). An important advantage of the system (4.4)
in comparison with (4.3a) is that the integral term � is excluded from the equation in
region M and it is to be evaluated only at the vortex boundary Γ(M ).

Using an integration by parts for the case of a localized vortex we obtain

�¯ ε¬Ω
!
¡

1

4π&
M

¡«[ε¬Ω
!
]

rr®r«r
dr«. (4.5)

In the region outside the vortex ε¬Ω
!
¯ 0, therefore the external velocity disturbance

� can be presented in accordance with (4.5) as the field generated by a source with the
density Q(r)¯®¡[ε¬Ω

!
], that is

�¯¡Φ, Φ¯®
1

4π&
M

Q(r«)
rr®r«r

dr«. (4.6)

For the calculation of (�[n) in (4.4c) both external and internal limits of the
expression (4.5) can be used since the normal component of velocity � is continuous at
the vortex boundary Γ(M ) ; however, we use the external limit, (4.6).

It is to be noted that the density Q in (4.6) can be expressed in more than one way.
The potential Φ outside region M is not changed when Q is replaced by the expression

Q¯®¡[[(ε¬Ω
!
)¡G ], (4.7)

where G is an arbitrary function different from zero only in the region occupied by the
vortex. This ambiguity in the selection of Q is used below for the reduction of the
volume integral (4.6) to the surface one.

Now we consider a physical aspect of the system of equations (4.4), (4.6). Equation
(4.4c) describes the evolution of the disturbed vortex boundary. Equations (4.4a),
(4.4b) describe the evolution of disturbances inside the vortex. The vortex boundary
evolution is connected with the disturbances inside the vortex through the term (�[n)
which is expressed as an integral over the whole volume of the vortex. In turn, the
dependence of the internal disturbances on the form of the boundary is expressed in the
fact that (4.4c) serves as the boundary condition for (4.4a), (4.4b). Equation (4.6) takes
into account the behaviour of the velocity at infinity.

Thus the system of equations (4.4), (4.6) describes disturbances of a three-
dimensional vortex in terms of the joint evolution of the vortex boundary and
disturbances inside the vortex region. Such an approach can be treated as a
generalization of the method of contour dynamics applied to describe the evolution of
a two-dimensional vortex boundary with constant vorticity (Zabusky, Hughes &
Roberts 1979; Dritchel 1986) to the case of the disturbances of three-dimensional
localized vortices with arbitrary vorticity.
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4.3. Go�erning equations

The vortex ring symmetry with respect to rotation around its axis z permits one to look
for eigen-oscillations in the form

εi(r, t)¯ εi(σ,ψ) exp (inθ®iωt). (4.8)

The amplitude function εi(σ,ψ) has to be found in order to determine the
disturbance forms in a vortex ring. This function is a vector function of two variables,
σ and ψ. For this reason the problem of vortex ring oscillations is much more difficult
than the problem of cylindrical vortex oscillations which reduces to finding the
functions of only one variable, ρ.

The coordinates σ, ψ, s are a curvilinear coordinate system with the non-diagonal
metric tensor g

ij
(Appendix A). Making use of such system one must keep in mind the

difference between co- and contravariant components of the vector fields a
i
¯ g

ij
aj. In

the coordinate system σ, ψ, s (4.2) is as follows:

Ωi¯ iµnΩ
!
(σ) εi9δ(σ®1)Ω

!
(σ)®

dΩ
!

dσ : δis εσ, (4.9)

where δ
ij

is the Kronecker symbol, δ(x) is Dirac’s δ-function. From (4.9) it follows that
at n1 0 the variables Ω and ε are interconnected unambiguously for all n.

The system of equations (4.4) in the coordinates σ, ψ, s at σ! 1 takes the form

¥
¥ψ

g
ss

Lεs®iµn(gψψ Lεψgψσ Lεσ)®iµnΩ
!
σεσ ¯ 0, (4.10a)

®
¥
¥σ

g
ss

Lεsiµn(gσσ Lεσgσψ Lεψ)®iµnΩ
!
σεψ ¯ 0, (4.10b)

¥
¥σ

(gψψ Lεψgψσ Lεσ)®
¥

¥ψ
(gσσ Lεσgσψ Lεψ)®iµnΩ

!
σεs®σεσ dΩ

!

dσ
¯ 0, (4.10c)

1

σ

¥
¥σ

(σεσ)
¥εψ

¥ψ
iµnεs¯ 0, (4.10d )

where g
ij

is the metric tensor, operator L has the form

L¯®iωVψ

!

¥
¥ψ

. (4.11)

The boundary condition
Lεσ®�σ ¯ 0, σ¯ 1 (4.12)

is obtained from (4.4c) taking account of the fact that the normal vector (3.5) to the
vortex ring surface has the covariant components nψ ¯ 0, n

s
¯ 0. The component �σ in

(4.12) is determined from (4.6), (4.7).
Note that if Vψ

!
depended on σ, the solution of (4.10) would have a singularity on

some streamlines (critical layers) σ¯σ
m

where ®ωmVψ

!
(σ

m
)¯ 0, m being an

integer. This would mean that the problem includes not only discrete eigen-frequencies
but also a continuous spectrum. For a thin vortex ring with a uniform vorticity
distribution the velocity has the form Vψ

!
¯ "

#
µ#F(σ), i.e. the continuous spectrum

appears at higher approximations with respect to µ. The vortex ring with an
isochronous flow in the core which is examined in this section differs from all the others
in that Vψ

!
¯ "

#
does not depend on σ to any approximation and hence it is characterized
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by oscillations of the discrete spectrum only. In this respect, the isochronous ring, and
not the uniform one, is the simplest for investigating three-dimensional oscillations.

The system of equations (4.10), (4.12) relating to the field ε and (4.6), (4.7)
connecting the fields � and ε are the governing equations for determining three-
dimensional eigen-oscillations. These equations have non-trivial solutions only for
certain values of ω which are the eigen-frequencies.

Note that the coefficients of these equations do not change with a change of the sign
of the s-component of the field ε(σ,ψ) with a simultaneous replacement of nU®n.
Therefore the eigen-oscillations at n%®1 can readily be obtained from the oscillations
at n& 1 through the replacement εsU®εs and the replacement of nU®n in the
amplitude ε(σ,ψ) in (4.8). Thus only the case n& 1 will be considered further.

4.4. Method of solution of the problem for µ' 1

In the present work we consider only long-wave oscillations (n¯O(1)) of a thin (µ' 1)
vortex ring. The eigen-frequencies of long-wave oscillations of the vortex ring must
be located in the regions ω¯ l}2O(µ), where l is an integer. In fact, the undisturbed
flow in a vortex ring in the limit µU 0 transforms to the flow in a cylindrical vortex.
Therefore the eigen-frequencies of a thin vortex ring (µ' 1) have to differ from eigen-
oscillations of a cylindrical vortex (µ¯ 0) by the value becoming zero at µU 0. Since
the cylindrical vortex has no long-wave oscillations with the eigen-frequencies outside
the regions ωE l}2, such oscillations cannot exist for the thin vortex ring either. This
conclusion can also be easily found from direct examination of the governing equation
set.

There are two complex problems in this task: solution of the system of differential
equations (4.10) and calculation of the integral (4.6) which appears in the boundary
condition (4.12). In this subsection a method is derived which permits the separation
of these problems. First, the eigen-oscillation is presented as an expansion in a set of
basic disturbances. Each basic disturbance is a solution of (4.10) but does not satisfy
the condition (4.12) at the vortex boundary. Then the velocity field for each basic
disturbance is calculated at the vortex boundary using the integral (4.6). Finally, the
coefficients of the eigen-oscillation expansion in basic disturbances and the eigen-
frequency ω are found from the boundary condition (4.12). The solution of this
problem for long-wave oscillations of a thin vortex ring is constructed as a series of
successive approximations in the parameter µ.

4.4.1. Basic disturbances ε
(m)

Now we consider the set of vector fields ε
(m)

(σ,ψ), m¯ 0,³1,³2,… in the region
σ% 1, which are the particular solutions of the system of equations (4.10) where ω is
a parameter. We demand that the boundary values of the σ-components of these fields

η
(m)

(ψ)¯ εσ

(m)rσ="
(4.13)

are a complete system of linearly independent functions in the segment 0%ψ% 2π.
Then any solution of the system of equations (4.10) at an arbitrary boundary condition
(including eigen-oscillations themselves) can be presented as an expansion:

ε(σ,ψ)¯ 3
¢

m=−¢

C
m

ε
(m)

(σ,ψ). (4.14)

The fields ε
(m)

(σ,ψ,ω) are called basic displacements. Each basic displacement has
the following physical meaning: it describes the internal structure of vortex
disturbances at forced oscillations of the vortex boundary in the form η

(m)
(ψ) with the

frequency ω.
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The basic displacements are selected as the linearly independent particular solutions
which have functionally the simplest form. Boundary conditions are not selected
beforehand. The completeness and linear independence of the system of functions
η
(m)

(ψ) will be confirmed directly by the expressions obtained for the basic
displacements.

Consider the method of basic displacement construction in a general case. The basic
displacements εi

(m)
and the metric tensor components g

ij
are presented as Fourier

series :

εi
(m)

(σ,ψ)¯ 3
¢

p=−¢

εi
p
(σ) eipψ, (4.15)

g
ij
¯G

ij
 3

¢

p=−¢

g(p)
ij

(σ) eipψ. (4.16)

The values of g(p)
ij

are determined in Appendix A and are no greater than O(µ).
Substituting (4.15) and (4.16) into (4.10) we get a system of equations for determining
εi
p
, p¯ 0, ³1, ³2,… :

ipL
p
εs
p
¯ iµn(Ω

!
σεσ

p
σ#L

p
εψ

p
) 3

¢

q=−¢

L
p−q

[®ipg(q)
ss

εs
p−q

iµn(g(q)
ψψ εψ

p−q
g(q)

ψσ εσ

p−q
)],

(4.17a)

®
d

dσ
L

p
εs
p
¯ iµn(L

p
εσ

p
®Ω

!
σεψ

p
) 3

¢

q=−¢

L
p−q9 d

dσ
(g(q)

ss
εs
p−q

)®iµn(g(q)
σσεσ

p−q
g(q)

σψ εψ

p−q
): ,

(4.17b)

d

dσ
(σ#L

p
εψ

p
)®ipL

p
εσ

p
¯ iµnΩ

!
σεs

p
®σεσ

p

dΩ
!

dσ

 3
¢

q=−¢

L
p−q9® d

dσ
(g(q)

ψψ εψ

p−q
g(q)

ψσ εσ

p−q
)ip(g(q)

σσ εσ

p−q
g(q)

σψ εψ

p−q
): , (4.17c)

1

σ

d

dσ
(σεσ

p
)ipεψ

p
¯®iµnεs

p
, (4.17d )

where L
p

is the operator L acting on the pth harmonic and having the value
L

p
¯ i(p}2®ω). Note that in the notation of the harmonic amplitudes εi

p
there are

no brackets in the lower subscript as distinct from the basic displacement εi
(m)

.
The harmonic amplitudes εi

p
(σ) are found from (4.17) by successive approximations

in the small parameter µ. When considering this method one should take into account
the following. If the L

p
were of O(1) for every p, the method of successive

approximations in respect to the parameter µ would be trivial. In this case the uniform
equations (4.17) with right-hand sides equal to zero are solved at the first step. At the
next steps the non-uniform equations (4.17) are solved, the right-hand sides of which
are expressed through the solutions obtained at the previous step.

However, it was shown at the beginning of this section that long-wave eigen-
oscillations of thin vortex ring have frequencies near the values l}2, that is

ω¯ "

#
lω«, (4.18)

where ω«' 1. It means that L
p

at p¯ l is an additional small parameter of the problem
aside from µ. This parameter changes the orders of magnitudes of the terms in (4.17),
separating the l-harmonic from all the others. As a result, the method of successive
approximations appears to be more complex. Since we confine ourselves to calculation
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of several expansion terms in the basic displacements, this fact will appear to be
significant only for those basic displacements which include the l-harmonic to the first
or second approximations. A detailed description of the whole mathematical procedure
is, however, too complicated to be given in this paper and we write only the resulting
equations for the complete set of basic displacements (Appendix C). Obviously, one
can add an arbitrary solution of (4.10) to the displacement presented.

4.4.2. Calculation of the integral term V
(m)

The next step of the method consists in calculating V
(m)

(ψ) for each basic
displacement ε

(m)
. In accordance with (4.6) this is determined from the equation

V
(m)

¯ �σ

(m)
rσ="

, �
(m)

¯®¡
1

4π&
Q

(m)
(r«)

rr®r«r
dr«, (4.19)

where Q
(m)

is found by substitution of the field ε
(m)

in (4.7). V
(m)

characterizes the
normal component of the velocity disturbance at the vortex boundary which would be
generated by the vorticity disturbance Ω¯¡¬(ε

(m)
¬Ω

!
) in accordance with the

Biot–Savart law.
Q

(m)
can be selected in more than one way. According to (4.7) the same value of the

velocity is produced by sources with different densities Q
(m)

¯®¡[(ε
(m)

¬Ω
!
¡G )

where G is an arbitrary function equal to zero at σ" 1. An appropriate selection of G
can, in principle, help overcome the calculation difficulties. This is connected with the
fact that in some cases Q

(m)
can appear to be a function of σ with an alternating sign.

In this case cancellation of terms in the integral (4.19) leads to obtaining the same
expression for � with the use of a different number of approximations in the parameter
µ for different representations of Q

(m)
.

In this situation the best way forward would be to add such a function of G which
reduces the volume density to the surface one, i.e.

Q
m
(σ,ψ)¯ q

m
(ψ) δ(σ®1), (4.20)

where δ(x) is Dirac’s delta-function. The function G is obtained as a solution of

~#G¯®¡[(ε
(m)

¬Ω
!
), σ! 1, (4.21a)

G¯ 0, σ¯ 1. (4.21b)

For each basic displacement the functions G are calculated as series in µ. Then we
get the expression

q
(m)

¯ [ε
(m)

¬Ω
!
¡G ]σ rσ="

. (4.22)

In spite of the appearance of the intermediate step connected with the calculation of
the unknown function G this reduction of the volume density to the surface one is a
great advantage because the integration over σ in (4.19) becomes trivial. The
integration over ψ is performed with the help of formulas presented in Appendix B.
Thus for each basic displacement (Appendix C) the functions G, q

(m)
and V

(m)
are

successively calculated.

4.4.3. The system of algebraic equations for determining the coefficients C
m

and
eigen-frequencies ω

Now we use the boundary condition (4.12) in order to find the eigen-frequencies ω
and coefficients C

m
of the eigen-oscillation expansion (4.14) in the basic displacements

ε
(m)

. Adopt the notation
F
(m)

(ψ)¯Lη
(m)

®V
(m)

, (4.23)
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where η
(m)

and V
(m)

are determined from (4.13) and (4.19), respectively. Then
substituting (4.23) into (4.12) and using (4.14) we get an infinite system of linear
algebraic equations:

3
¢

m=−¢

F
(m)p

C
m
, p¯ 0,³1,³2,… , (4.24)

where F
(m)p

are the coefficients of the Fourier series of the functions F
(m)

(ψ) in the
harmonics exp (ipψ). This system determines coefficients C

m
and eigen-frequencies ω.

The solution of the infinite system of algebraic equations (4.24) in a general case is
of significant difficulty. However for a thin vortex ring coefficients F

(m)p
will have

different orders in µ. Therefore for determining coefficients C
m

to each approximation
the infinite matrix F

(m)p
will be efficiently reduced to a finite one.

4.5. Dispersion equation and eigen-frequencies

The expressions for the auxiliary functions G, q
(m)

, V
(m)

and F
(m)

are too cumbersome
to be derived in this paper. For this reason only the resulting system of algebraic
equations is written here. Consider first the frequencies ωE l}2 at l& 1 and then the
frequencies ωE 0 (l¯ 0).

In the case l& 2 the equation system (4.24) is as follows:

90® lω«
2µn

O(ω«)1 J
l
(a

!
)O(µω«) J

l+"‘
(a

!
):Cl

i 9l(3l2)ω«
4n#µ

µ
(3l1)

8(l1)
O(µ#,ω«):Cl+"

 3
m1l,l+"

O(µ)C
m

¯ 0, (4.25a)

®i 9ω«01
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1µ#0 6l $11l #®4

32l(l1) (l2)


n#
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O(µ)C
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¯ 0, (4.25b)
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l
(a

!
)O(µω«) J

l+"
(a

!
)]C
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p1 l, l1, (4.25c)
where a

!
¯ (µn}ω«) [1#"
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lω«}n#"'$

"*#
µ#O(µω«,µ$)].

In the case l¯ 1 (4.25) are still valid except for (4.25c) which at p¯ 0 has the form

i
n#µ#

2
C

!
O(µ%,ω«µ#)C

#
[O(ω«µ#) J

"
(a

!
)O(µ$ω«) J

#
(a

!
)]C

"
 3
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",#

O(µ$)C
m

¯ 0.

(4.25d )

The difference between (4.25d ) and (4.25c) relates to the fact that in the case l¯ 1
the basic displacement ε

(!)
has a structure different from the general one (Appendix C).

In both cases l& 2 and l¯ 1 we easily obtain the estimates

C
p
¯O(µ#,ω«)C

l+"
[O(ω«) J

l
(a

!
)O(µω«) J

l+"
(a

!
)]C

"

at p1 l, l1 from (4.25c) or (4.25d ). Substituting this estimate in (4.25a, b) we find
that all the terms under the sign of the sum have the value of the order of the rejected
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terms. Thus the infinite system of algebraic equations (4.25) is reduced to a system of
two equations with respect to coefficients C

l
and C

l+"
. The condition that the

determinant of this system is equal to zero gives the dispersion equation

9ω«®µ#0 (6l #11l6)

32l(l1) (l2)
®

n#

4l(l2)1O(µ$): J
"
(a

!
)

J
l+"

(a
!
)

¯®
(3l2)#(l1)ω«$

4n$µ
O(µ#ω«,µ% ). (4.26)

This dispersion equation is obtained for l& 1 and allows finding eigen-frequencies
of a thin vortex ring which are not close to ω¯ 0. The dispersion equation (4.26) is a
transcendental equation, the roots of which are the eigen-frequencies. These roots are
close to the values at which one of the left-hand-side factors becomes zero. The second
factor becomes zero at the infinite number of points corresponding to zeros of the
Bessel function J

l
. These zeros correspond to an infinite family of eigen-oscillations

with frequencies of the form

ω¯ "

#
l³

µn

a
j

[1O(µ)], (4.27)

where J
l
(a

j
)¯ 0, j¯ 1, 2,…. These frequencies have the accumulation point l}2. We

shall call oscillations of this family Bessel oscillations (similarly to the columnar vortex
oscillations, §2).

At any l there exists one more eigen-oscillation corresponding to the first factor of
the dispersion equation becoming zero. This oscillation has the frequency

ω¯ "

#
lµ#0® n#

4l(l2)


(6l#11l6)

32l(l1) (l2)1O(µ$). (4.28)

We shall call this eigen-oscillation an isolated one.
For the case l¯ 0 the system of equations (4.24) has the form
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(a) (b)

(c) (d)

F 6. Boundary disturbance shape for three-dimensional oscillations. (a) Bessel mode, l¯ 1,
n¯ 2: whole ring and half a ring; (b) bulging mode (two phases of oscillation), l¯ 0, n¯ 2, j& 1; (c)
bending mode, l¯ 0, n¯ 2 (two phases of oscillation) ; (d ) isolated modes, l¯ 1, n¯ 1 compared
with axisymmetric mode.

In contrast to the case l& 1, this infinite system of algebraic equations is reduced to
a system of three equations with respect to coefficients C

!
, C

"
and C

−"
. The condition

that the determinant of this system is equal to zero gives the dispersion equation

9ω#®
µ%

16
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n
B

n
O(µ&,µ$ω): J!(a!

)

J
"
(a

!
)
¯O(ω$,µ'). (4.30)

The structure of (4.26) and (4.30) is similar. Equation (4.30) has an infinite number
of roots close to zeros of the Bessel function J

!
. These roots correspond to the family

of eigen-oscillations with the frequencies

ω¯
µn

a
j

[1O(µ)], (4.31)

where J
!
(a

j
)¯ 0, j¯ 1, 2,… . These frequencies have the accumulation point ω¯ 0. We

shall call Bessel oscillations of this type bulging modes.
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At any l there exists one more eigen-oscillation with frequency close to ω¯ 0. It is
an isolated mode (called the bending mode) with the frequency

ω¯ "

%
µ#(A

n
B

n
)"/#O(µ$). (4.32)

It can be seen that the structure of the oscillation spectrum of a thin vortex ring turns
out to be similar to the structure of the cylindrical vortex spectrum. In fact, if the
wavenumber k¯µn¯ const. is fixed and the ring curvature tends to zero (µU 0),
(4.27), (4.31) are exactly transformed into (2.3) at l¯m and (4.28), (4.32) are
transformed into (2.5), (2.4) at l¯m®1.

However, as will be shown in the next subsection, the forms of the vortex ring and
vortex column oscillations are already different to the leading approximation.

4.6. The forms of eigen-oscillations

The accuracy of calculating the terms in the dispersion equation (4.26) and (4.30)
appears to be quite sufficient for finding the whole spectrum of eigen-frequencies (up
to the accumulation point). Regarding the eigen-oscillation forms, the accuracy
achieved is enough only for calculation of two approximations of an isolated mode and
of the leading approximation of those Bessel (bulging) modes that have frequencies
furthest from the accumulation point (ω«}µ¯O(1)).

Substituting each eigen-frequency in the system of algebraic equations we find the
coefficient C

m
of the expansion of the corresponding eigen-oscillation with respect to

basic displacements ε
(m)

. Consider all the eigen-oscillations in a turn.
For Bessel oscillations at l& 1, ω«}µ¯O(1), the frequency of which are determined

by (4.27), coefficients C
m

are

C
l
¯

ia
j

µnJ
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(a
j
)
O(1), C

l+"
¯®

(3l2) (l1)

2na
j

O(µ), C
m

¯O(µ), m1 , l1.

(4.33)

The expressions obtained for coefficients C
m

together with the expressions for the
basic displacements ε

(m)
(Appendix C) determine the form of eigen-oscillations ε(σ,ψ)

according to (4.14). In particular, the vortex boundary disturbance εσ rσ="
which

characterizes the oscillation shape is (figure 6)

εσ rσ="
¯ eilψ®

(3l2) (l1)

2na
j

ei(l+")ψO(µ). (4.34)

The form of Bessel oscillations of a vortex ring, to the leading approximation,
appears to be a combination of two harmonics, exp (ilψ) and exp [i(l1)ψ], in contrast
to the corresponding vortex column oscillations which have the form of a single
harmonic exp (ilφ). The second term in (4.34) disappears in the limit µU 0, nU¢,
k¯µn¯ const.

Thus, even a slight curvature of the vortex filament leads to dramatic changes in the
characteristics of its oscillations. Moreover, velocity disturbances outside the vortex
(and consequently also the sound field) are determined by the (l1)th harmonic, i.e.
by that part of the vortex ring disturbance which appears if the vortex filaments are
curved. This is connected with the fact that the phase velocity of the boundary
disturbance in the form of exp (ilψ®iωt) is close to the mean flow velocity, i.e. this
vortex boundary displacement is adhered to the mean flow and produces disturbances
outside the vortex with efficiency much smaller than the (l1)th harmonic with an
equal amplitude (see §2).
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All that has been written above about the Bessel oscillation structure at l& 1
concerns bulging modes (Bessel oscillations with l¯ 0). These modes have the
frequency determined by (4.31). At ω}µ¯O(1) the coefficients C

m
for bulging modes

are

C
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Write only the vortex boundary disturbance form (figure 6) :

εσ rσ="
¯ ei!ψ®

1

na
j

(eiψ®e−iψ)O(µ). (4.36)

Note an interesting feature of the standing bulging wave which is the sum of the
modes with n¯³1. At different phases of such an oscillation the ring plane is inclined
at different angles to the reference position. This seems to be impossible from the
standpoint of the localized induction approximation (LIA) within the limits of which
the ring impulse is directed along its axis. However, a more detailed analysis (Kopiev
& Chernyshev 1991) taking into account the disturbance structure inside the core has
shown that the flow impulse at these oscillations is well preserved in reality.

For isolated oscillations with l& 1, the frequency of which is determined by (4.28),
coefficients C

m
have the form
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For isolated oscillations with l¯ 0 (bending modes), the frequency of which is
determined by (4.32), coefficients C

m
have the form
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As in the case of Bessel oscillations we write only the vortex boundary disturbance
form (figure 6) :

εσ rσ="
¯ ei(l+")ψ®

µ

4
eilψ®

(2l3)µ

4(l1)
ei(l+#)ψO(µ#), l& 1, (4.39a)

εσ rσ="
¯ cosψ®i (B

n
}A

n
)"/# sinψO(µ), l¯ 0. (4.39b)

The solution for bending modes (l¯ 0) is identical to the solution already known
(Widnall et al. 1971).

Unlike the Bessel oscillations, the isolated (bending) modes of a vortex ring, in the
leading approximation, coincide with the isolated modes of a vortex column.

On the basis of the solutions obtained above in terms of the displacement field it is
also easy to find the velocity disturbance field for each oscillation. In fact, the velocity
field inside the vortex (σ% 1) is determined directly from (4.3a). Outside the vortex
(σ" 1) the velocity � and potential Q are determined by the integral relation (4.6) in
which the value of the monopole density Q, according to (4.20), has the form

Q¯ qδ(σ®1), q¯ 3
¢

m=−¢

C
m

q
m
,
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where the q
m

for each basic displacement were obtained when the functions F
(m)

were
calculated. The velocity potential Φ produced by monopole density of arbitrary form
can be found using Appendix B (B 12).

We write the expressions for q at all eigen-oscillations. For Bessel oscillations

q¯®i
(3l2) (l1)ω«

2n#µ
ei(l+")ψO(µ), l& 2, (4.40a)
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For isolated oscillations
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)"/#O(µ)] cosψO(µ$) ei!ψO(µ), l¯ 0.

(4.41c)

Expressions (4.40) confirm the point made above about the external velocity field
structure for Bessel oscillations.

Note the possibility of the appearance of the boundary displacement due to initial
vorticity disturbances confined inside the core. In this case the boundary displacement
(disturbing the external region) does not appear immediately but takes some time. To
clarify the situation we consider two abstract oscillations ε

"
¯ cosω

"
t and ε

#
¯

®cosω
#
t with frequencies different from each other by an order of magnitude of µ, that

is ∆ω¯ω
"
®ω

#
¯O(µ). At the initial moment the sum of these oscillations equals zero.

However, after a not large period of time the expression ε
"
ε

#
¯®2∆ωt sinω

"
t can be

readily obtained, which indicates a linear increase of the oscillation amplitude,
attaining O(1) values for the period of time O(1}µ). A similar situation can easily arise
in a vortex ring. Let the initial disturbance be located inside the core and the boundary
displacement of the core be absent. The initial disturbance is expanded as a complete
set of eigen-oscillations, the phase and amplitudes of which are selected in such a way
that the boundary displacement is absent. Since the eigen-modes have the amplitude of
a non-adherent harmonic exp (i(l1)ψ) of O(1) and eigen-frequencies fit the interval
∆ω¯O(µ), the disturbance evolution is quite similar to the case with two oscillations
mentioned above. The boundary disturbance non-adherent to the main flow arises
at the time O(1}µ). This linear increase of the sound-generating oscillation amplitude
is not produced by the usual instability (eigen-oscillation with complex frequency) and
is connected only with the structure of the initial disturbance which can readily appear
at the moment of the vortex sheet convolution into a vortex core. This phenomenon
is rather similar to algebraic instability.

Special attention must be given to the possibility of degeneration of the isolated
(bending) and Bessel (bulging) modes (the coincidence of zeros of the first and the
second factors on the left-hand side of the dispersion equation (4.26) or (4.30) at certain
parameters of the steady flow). This situation is possible at ω«¯O(µ#). According to
the sign of the right-hand side of the dispersion equation, the appearance of instability
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(0, 1, j) (l, 1, j) n = 1

(0, n, j) (l, n, j) n&2

l/20 ö

F 7. Spectrum of three-dimensional vortex ring oscillations (the numbers l, n and j are indicated
in brackets). E, Bessel oscillations (including bulging mode) ; D, isolated oscillations (including
bending mode).

or beating is possible (Landau & Lifshitz 1979, §6.4). In the case the appearance of
beating between the bending and bulging modes a very interesting phenomenon can be
expected in the vortex ring. Let the degeneration of a bending mode and one of the
bulging modes of the vortex ring take place and let the initial state of the ring be in the
form of flexure. Then after a time all the energy of this bending disturbance will
transfer into a bulging disturbance with a large value of j due to the beating effect. The
characteristic scale of the bending disturbance has the order of the vortex radius R. At
the same time the characteristic scale of the bulging disturbance is determined by this
disturbance structure in the coordinate ρ in the core section (i.e. it is determined by j ).
Therefore the characteristic scale of a bulging disturbance will be the cross-section size
a divided by j, i.e. µ#R. In the presence of even a small viscosity such energy transfer
between the bending and bulging disturbances will go only in one direction since the
bulging disturbances will rapidly dissipate because of their small-scale structure.

4.6.1. Classification of three-dimensional eigen-oscillations

Long-wave three-dimensional eigen-oscillations of the isochronous vortex ring can
be characterized by three integers : the frequency number l, azimuthal number n and
radial number j. In fact, the vortex ring oscillations have frequencies located in the
neighbourhood of ω¯ l}2 and they have a definite number n of the azimuthal
harmonic. Besides, Bessel and bulging oscillations differ by the radial number j& 1
which characterizes the disturbance form in the vortex core section. In accordance with
this, we characterize Bessel (bulging) oscillations by three numbers (l, n, j ), and each
isolated (bending) oscillation by the numbers (l, n, 0) (the radial number for the isolated
modes is taken equal to zero). Without losing generality we confine ourselves to
consideration of the positive frequencies (l& 0) and non-negative azimuthal numbers
(n& 1). As it is shown above, these solutions can be readily generalized to the other
parameter ranges.

Thus Bessel and bulging oscillations may have the frequency number l& 0 and the
azimuthal number n& 1, the isolated oscillations (except the bending mode) have the
frequency number l& 1 and the azimuthal number n& 1, while the bending mode
exists only at l¯ 0 and n& 2 (figure 7).

4.7. Effect of the shape of the �orticity profile of the steady �ortex ring on the
properties of its oscillations

The two-dimensional (axisymmetrical) eigen-oscillations of a vortex ring with uniform
vorticity (§§3.2, 3.3) and the three-dimensional eigen-oscillations of an isochronous
vortex ring (§4.6) have been obtained. The question of the applicability of these
solutions to any similar steady vortex rings now arises.
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The complete solution of the problem of the eigen-oscillations of a vortex ring with
arbitrary vorticity profiles is one of extreme complexity since the spectrum of these
disturbances in a general case includes both discrete and continuous components.
Nevertheless, the solutions obtained in the present work for two of the simplest
vorticity profile shapes prove to be quite sufficient for understanding the evolution
during rather a long period of time of arbitrary disturbances of any vortex rings, the
stationary flow of which is similar to that considered above.

In fact, the exact expressions for the eigen-oscillations are not always necessary for
a description of the initial disturbance evolution of any oscillatory system. Such a
description can often be achieved on the basis of a consideration of a similar system
(if it is more simple), the eigen-oscillations of which are considered as slightly
interacting. A similar situation occurs in the well-known problem related to weakly
connected oscillators. It can be solved both in the language of exact eigen-oscillations
and in the language of individual oscillator eigen-oscillations weakly interacting with
each other.

Therefore, the solutions obtained for the uniform vortex ring and the isochronous
one can be used for describing the disturbance evolution of any similar stationary
vortex ring if the solutions obtained are considered to be weakly interacting. A
quantitative description of this interaction with the use of perturbation methods is
outside the scope of this paper. However, the idea of the disturbance evolution of an
arbitrary vortex ring, as the result of interaction of the vortex ring modes obtained
above, permits the evaluation of the time during which this interaction can not be taken
into account in the initial value problem.

Consider for example any eigen-oscillation for an isochronous vortex ring. Substitute
this solution into the system of equations (4.4) in which the stationary flow differs by
an amount of O(µ#) from the isochronous one. This equation can be readily reduced
to the evolutionary equation with an isochronous profile and with the right-hand side
of O(µ#). This means that such an initial disturbance keeps its form during a large time
interval and is distorted after a time of O(µ−#) due to appearance of the secular terms.
This can be extended to an arbitrary initial disturbance since the system of
axisymmetrical and three-dimensional eigen-oscillations is complete.

Thus, the evolution of an arbitrary initial disturbance of any stationary ring differing
from uniform (isochronous) by an amount of O(µ#) can be described for a length of
time of O(µ−#) with the help of the solutions found in §§3.2, 3.3 and 4.6.

5. Sound radiation by vortex ring oscillations

It is well known that in a compressible fluid the unsteady movement of vortices is
accompanied by sound wave radiation. If the sound wavelength considerably exceeds
the vortex size, the sound field is determined by the vortex dynamics which is obtained
in the incompressible fluid approximation. The simplest expression connecting the
sound field with incompressible vortex dynamics was obtained by Mo$ hring (1978) and
is as follows:
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where M¯Ω
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a}c

!
, c

!
is the sound speed. Dimensionless variables are used. The
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length and time scales are determined as in §3.1. Also, the undisturbed density is set
to unity.

In this section the sound fields generated by the vortex ring oscillations are
calculated. For the calculation we use the solutions obtained in §§3 and 4. It has been
pointed out in §4.7 that one can consider these solutions as a typical complete set of
eigen-oscillations for any vortex ring with vorticity slightly different from uniform or
isochronous ones.

The main problem arising in the calculation of the sound field produced by vortex
ring oscillations consists in the following. The vortex ring eigen-oscillations in
incompressible fluid are found as an expansion in harmonics exp (imψ). The amplitude
of each harmonic is known only with some accuracy in the parameter µ. It appears that
harmonics with a different order in µ can make the same contribution to the sound
field, depending on the harmonic number m. Therefore a careful analysis of the
contribution of all the eigen-oscillation components to the sound field is required so
that it can be stated with certainty that all the necessary terms have been taken into
account.

In this section the integral (5.2) is transformed into the surface one. Integration over
θ for oscillations of the type exp (inθ) can be done in a general way. As a result, the
volume integral (5.2) determining a quadrupole moment is reduced to only the integral
in the angular variable ψ. Such a representation permits the evaluation of the
contribution of different terms of the eigen-oscillations to the sound field in a rather
simple manner.

5.1. Transformations of the formula for the sound field

Since contractions of both tensor r
i
[r¬Ω]

j
and r

j
[r¬Ω]

i
with the symmetrical tensor

N
i
N

j
give an identical result, then in calculating the sound field one can use the

following expression instead of (5.2) :

D
ij
¯

1

6& [r¬Ω]
i
r
j
dr

1

6& [r¬Ω]
j
r
i
dr. (5.3)

Substitute (4.2) into (5.3). After simple transforms we get

D
ij
¯®

δ
ij

3 & r
k
[ε¬Ω

!
]
k
dr

1

2& (r
i
[ε¬Ω

!
]
j
r

j
[ε¬Ω

!
]
i
) dr. (5.4)

It is easy to check that the tensor identity holds :

r
i
r
j
Q¯ r

i
[ε¬Ω

!
]
j
r

j
[ε¬Ω

!
]
i
®2δ

ij
G®

¥
¥x
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j
(ε¬Ω

!
¡G)

k
]

¥
¥x

j

(r
i
G)

¥
¥x

i

(r
j
G),

(5.5)

where the functions Q and G are determined in (4.7). Substitute (5.5) into (5.4) and
transform the volume integrals from the terms with derivatives into surface ones. Since
outside the vortex the functions Ω

!
and G are identically equal to zero, the surface

integrals are also equal to zero. Thus (5.4) can be written

D
ij
¯

1

2& r
i
r
j
Qdr®

δ
ij

6 & r#Qdr. (5.6)

An expression for a quadrupole moment similar to (5.6) without the second term was
used by Kopiev & Chernyshev (1993). This was possible since the second term became
zero for the oscillations considered there. In a general case the correct equation (5.6)
must be used.
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On choosing G according to (4.21) the integration over the σ-variable becomes
trivial, since Q is a surface density of the form Q¯ q(ψ) δ(σ®1). The q for all types of
three-dimensional vortex ring eigen-oscillations were obtained in §4.6.

Write down the radius vector r (figure 3) in the form

r¯ ρ sinφe
z
(µ−"®ρ cosφ) eξ,

where (eξ)x
¯ cos θ, (eξ)y

¯ sin θ. Substitute the components of radius vector r in (5.6)
and integrate over the angle θ. Then, making use of the dependence on exp (inθ) of Q,
we obtain that the quadrupole moment D

ij
differs from zero only for three azimuthal

numbers n¯ 0, 1, 2. Contracting the tensors D
ij

and N
i
N

j
for these values of n we get

the radiation directivity:

N
i
N

j
D

ij
¯πµ−$("

#
(I

"
I

$
)®"

$
I
%
"

#
(I

$
®I

"
) cos 2χ), n¯ 0, (5.7a)

N
i
N

j
D

ij
¯πµ−$ I

#
eiθ sin 2χ, n¯ 1, (5.7b)

N
i
N

j
D

ij
¯πµ−$ "

#
I
"
e#iθ sin#χ, n¯ 2. (5.7c)

The constants I
"
, I

#
, I

$
, I

%
are the integrals over the ψ-variable, the values of which

depend on the particular form of q(ψ) :

I
"
¯&#

π

!

[1®2µ cosψ"

%
µ#(13 cos 2ψ)O(µ$)] q(ψ) dψ, (5.8a)

I
#
¯&#

π

!

µ[sinψ®&

)
µ sin 2ψO(µ#)] q(ψ) dψ, (5.8b)

I
$
¯&#

π

!

µ#[1®cos 2ψO(µ)] q(ψ) dψ, (5.8c)

I
%
¯&#

π

!

[1®2µ cosψ"

%
µ#(3cos 2ψ)O(µ$)] q(ψ) dψ. (5.8d )

The expressions (5.8) readily permit the evaluation of the contribution of different
harmonics exp (ipψ) entering the function q(ψ) to the sound field. This permits one to
find the necessary accuracy with which various harmonics must be calculated. For
example, the following harmonics give identical contributions to the integrals (5.8) :
harmonic exp (2iψ) of O(1), harmonic exp (iψ) of O(µ) and harmonic exp (0iψ) of
O( µ#). This was why the calculation of different harmonics in q(ψ) was done with
different accuracy in §4.6.

5.2. Calculation of the sound field produced by �ortex ring eigen-oscillations

The many eigen-oscillations of the vortex ring can be divided into three groups ac-
cording to the value of the eigen-frequencies : they are bending modes (ω¯O(µ# lnµ)),
bulging modes (ω¯O(µ)) and several families of oscillations with frequency ω¯O(1).
For each group we single out those oscillations the sound radiation of which has the
largest quadrupole moment according to the order of magnitude.

As it was shown in the previous section, the quadrupole moment is different from
zero only for those oscillations which have azimuthal numbers n¯ 0, 1, 2. Besides,
among the oscillations with the frequency ω¯O(1) the most efficient ones are those
which have the frequency number l¯ 1. Indeed, with increase in l the number of main
harmonics which determine the oscillation form and function q(ψ), in the leading
approximation, also increases. In turn, the larger the number of the harmonic entering
the function q(ψ), the smaller is the contribution of this harmonic to integrals (5.8) and,
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hence, to the quadrupole moments (5.7). In particular, direct substitution of (4.40a)
into (5.8) in the case of l& 2 gives a value of integrals (5.8) not larger than O(µ%) and
a substitution of (4.40b) into (5.8) in the case of l¯ 1 gives the value O(µ$).

Thus, only eigen-oscillations with n¯ 0, 1, 2 and l¯ 0, 1 are worthy of attention.
For three-dimensional oscillations (n¯ 1, 2) we need to consider the modes (1, 1, j ),
(1, 2, j ), (0, 1, j ) and (0, 2, j ), where j& 0 (§4.6). For axisymmetrical modes (n¯ 0) we
need to consider a complete set of modes with l¯ 1, including the continuous spectrum
modes.

5.2.1. Bessel oscillations

Consider Bessel oscillations of the type (1, 1, j ) and (1, 2, j ), where j& 1. To calculate
the sound field the values of q determined by (4.40b) are substituted in (5.8b) for
n¯ 1 and (5.8a) for n¯ 2. Then for the oscillation (1, 1, j ) we obtain

p¯³
iπM #

2'a
j
µ

eiMr/#

r
eiθ sin 2χ. (5.9)

For the oscillations (1, 2, j ) we obtain

p¯³
11πM #

2) a
j
µ

eiMr/#

r
e#iθ sin#χ. (5.10)

The signs  and ® in the formulas for the sound field are associated with the fact
that the frequencies of Bessel oscillations (4.27) are both to the left and to the right of
the value ω¯ l}2.

5.2.2. Bulging oscillations

Consider bulging oscillations of the type (0, 1, j ) and (0, 2, j ). To calculate the sound
field the values of q determined by (4.40c) are substituted in (5.8b) for n¯ 1 and (5.8a)
for n¯ 2. Substituting (4.40c) into (5.8b) we get the integral I

#
at O(µ#), since the O(µ)

terms give exactly zero at integration. Hence for the oscillation (0, 1, j ) the sound field
can be evaluated as

p¯C
eiµMr/aj

r
eiθ sin 2χ, (5.11)

where C¯O(µ#M #).
For the oscillations (0, 2, j ) we obtain

p¯
2πM #µ

a%
j

ei#µMr/aj

r
e#iθ sin#χ. (5.12)

Note that the sound field amplitude depends on the radial number j to a large degree
(pC 1}a%

j
). Therefore a considerable contribution to the sound field can be made only

by the oscillations with not large radial numbers j.

5.2.3. Isolated modes

Consider isolated oscillations of the type (1, 1, 0) and (1, 2, 0). To calculate the sound
field the values of q determined by (4.41b) are substituted in (5.8b) for n¯ 1 and (5.8a)
for n¯ 2. Then for the oscillation (1, 1, 0) we obtain

p¯
iπM #

2'µ

eiMr/#

r
eiθ sin 2χ. (5.13)
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For the oscillation (1, 2, 0) we obtain

p¯®
πM #

2(µ

eiMr/#

r
e#iθ sin#χ. (5.14)

5.2.4. Bending oscillations

Consider bending oscillation of the type (0, 2, 0). To calculate the sound field the
values of q determined by (4.41c) are substituted in (5.8a). Then we obtain

p¯®
πM #µ%B#

n
A

n

2)

exp (i(A
n
B

n
)"/#Mµ#r}4)

r
e#iθ sin#χ, (5.15)

where A
n

and B
n

are determined from (4.29).

5.2.5. Axisymmetric oscillations

Consider isolated mode (3.8) and an infinite set of modes of the continuous spectrum
(3.16) located inside the interval of O(µ#) near ω¯ l}2 (l¯ 1). To obtain the values of
q for these oscillations the standard procedure similar to the case of three-dimensional
oscillations (§4.4) is used. For all these modes the value of q appears to be the same
and is

q¯ i[1O(µ#)] e#iψi 9µ8O(µ#): eiψ®i 998µO(µ#): e$iψO(µ#). (5.16)

Comparison of (5.16) and (4.41b) shows that the value of q for axisymmetric
oscillations of the uniform vortex ring coincides with the value of q for three-
dimensional isolated oscillations of an isochronous vortex ring, except for the
harmonic exp (0iψ) which is absent in (5.16).

To calculate the sound field the values of q determined by (5.16) are substituted in
(5.8). Then for all the axisymmetric modes we obtain

p¯®
πM #

2'µ

eiMr/#

r
(3 cos#χ®1). (5.17)

5.2.6. Comparison of �ortex ring eigen-oscillations according to their sound radiation
efficiency

The frequency ω enters (5.1) for the sound field in the third power. Therefore the
modes which have frequencies of different orders in the parameter µ have substantially
different radiation efficiency.

Thus, Bessel, isolated and axisymmetric modes at l¯ 1 relate to fast oscillations. For
these oscillations the sound pressure p is of O(µ−"). Bulging and bending modes relate
to slow oscillations. Therefore the sound radiation efficiency of these modes is
significantly lower. In their turn, the frequencies of bulging and bending oscillations
differ by an order of magnitude. According to this, p for bulging oscillations is of O(µ)
and for bending oscillations it is of O(µ% ln$µ).

Thus, the modes which provide the most efficient sound radiation are the infinite
number of modes with the identical frequency number l¯ 1. They are two isolated
modes, and many Bessel modes and axisymmetric modes. These modes are of similar
frequencies. The frequencies of axisymmetric modes are in the interval ∆ω}ω¯O(µ#),
the frequencies of Bessel modes are in the interval ∆ω}ω¯O(µ).
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The sound radiation by bulging and bending modes appears to be of low efficiency.
Nevertheless, sound radiation of these modes can be of interest in those cases when
low-frequency radiation is important.

6. Discussion

Consider the possibility of applying these results to explain an acoustic experiment
with a turbulent vortex ring. First, note that a turbulent vortex ring is substantially
different from the ideal analogue which the theory deals with. The ideal vortex ring
(figure 3) is actually a vortex torus, surrounded by an ellipsoidal region (the so-called
vortex envelope) in which the streamlines are closed but the fluid is not vortical (at
certain parameters of the ring the vortex envelope degenerates (Batchelor 1970, figure
7.2.4)). The toroidal vortex core together with the envelope move without variation of
form and geometric size. The flow dynamics is determined by the vortex core which is
an oscillating system with an infinite number of degrees of freedom (§§3, 4). If eigen-
oscillations are excited, the forward movement of the ring is accompanied by sound
radiation which is calculated in §5.

Experiments show that the real ring movement at high Reynolds number is
significantly more complex (see, for example, Shariff & Leonard 1992). First, the flow
appears to be turbulent and is accompanied by an intensive wake (figure 8). Secondly,
the movement is accompanied by a slow variation of geometric vortex parameters,
vorticity in the core, forward velocity, etc. However, in the work of Vladimirov &
Tarasov (1979) and in the recent work of Johari (1995) it has been shown that the
structure of turbulence in the turbulent vortex ring is substantially non-uniform. Thus,
only the flow in the vortex envelope and in the wake proves to be turbulent while in
the vortex core the turbulence is suppressed.

Since the laminar vortex core seems to be dominant in the overall vortex dynamics,
the turbulence suppression in the core allows one to expect that, in the leading
approximation, the laminar theory presented in this paper will be true.

At present it has been found experimentally that a solitary turbulent vortex ring
radiates sound and this radiation level is sufficient for its reliable measurement (Zaitsev
et al. 1990). The vortex rings investigated in that paper were generated in an anechoic
chamber by means of a piston-driven vortex generator with a nozzle diameter d¯ 4 cm
and an initial jet ejection velocity V

!
E 30 m s−" (corresponding to Reynolds number

Re¯V
!
d}ν¯ 6.8¬10%). The ring noise was determined from the averaged spectrum

in a series of 12 selected time samples of length 31.2 ms starting after 220 ms from the
initiation of the ring (this corresponds to the part of the path at a distance from 200
to 230 cm from the nozzle orifice), manifesting itself as strong peaking of the spectrum
in a narrow frequency band (∆ωE 300 Hz) with the maximum near the frequency
ω
!
E 1200 Hz (figure 9). During the time samples of acoustic measurements the vortex

ring has the following measured parameters R
!
E 3.5 cm, µE 0.12, V

!
E 10 m s−". The

peak frequency drift connected with a slow variation of the properties of the vortex
core for the time sample is ∆ωE 60 Hz.

The detailed analysis of three independent experiments (Zaitsev & Kopiev 1991) –
measurements of the sound field, measurements of the vortex velocity and visualization
– has led to a paradoxical situation. On the one hand, the peak frequency exactly
agrees with the frequency of the isolated mode with l¯ 1. On the other hand, the
specific characteristics of the signal are found to be typical of a narrow-band stochastic
process rather than of a harmonic component (as it could be for radiation by a separate
mode).



50 V. F. Kopie� and S. A. Chernyshe�

F 8. Cross-section of a turbulent smoke ring, side view (Kopiev et al. 1996).

1200 Hz

10 dB

P

(a)
(b)

öö0

F 9. Averaged sound pressure spectrum: (a) with a vortex ring present ;
(b) without a vortex ring.

Within the limits of the theory derived one can readily explain these experimental
facts : peak existence, uniqueness of peak, peak width and narrow band stochastic
feature of the signal. The modes with l¯ 1 do indeed radiate sound most efficiently. On
the other hand, l¯ 1 corresponds not to one but to a number of modes: two isolated
modes with frequencies ω¯ "

#
O(µ#), two families of Bessel modes with frequencies

ω¯ "

#
O(µ) and axisymmetric modes with frequencies ω¯ "

#
O(µ#). These modes are

in the interval ∆ω}ω¯ (®4µ}a
"
, 4µ}a

"
) relative to the central point ω

!
¯ "

#
. In

dimensional variables for µ¯ 0.12, a
"
¯ 3.83 and ω

!
E 1200 Hz we obtain ∆ω¯

300 Hz, i.e. the peak radiation width agrees with the theoretical results not only
qualitatively but quantitatively as well. Obviously the mixed sound radiation of these
modes will be similar to a narrow-band stochastic process.

Finally, some comments should be made concerning possible mechanisms of
excitation of the sound-generating oscillations in the vortex core. One of such
mechanism can be associated with oscillation instabilities. At present three types of
vortex ring instability are known: bending mode instability (Widnall & Tsai 1977;
Saffman 1978), bulging mode instability (Kopiev & Chernyshev 1995), and acoustic
instability (Kopiev & Leontiev 1987). In the first two cases the unstable modes appear
to be non-sound-generating ones and therefore to explain the phenomenon of
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excitation of sound-generating oscillations it would be necessary in this case to involve
the nonlinear effects. Acoustic instability has a small increment of O(M&). Another
possible source of sound-generating oscillation excitation is initial disturbances. Note
the possibility of sound-generating disturbance excitation not immediately after the
ring generation but after some period of time due to the evolution of the initial
disturbances confined inside the vortex core (§4.6).

The authors would like to thank one of the referees for valuable questions and
recommendations which have produced a great influence on the final manuscript. This
work is partly a result of research sponsored under Grant MC9300 of International
Science Foundation & Russian Government and Grant 96-01-00568 of Russian
Foundation of Basic Research.

Appendix A

The coordinate system σ,ψ, s satisfying (3.3) for both types of steady flow
considered in the present work (uniform and isochronous) with accuracy up to the
terms of O(µ#) is determined by (3.4) and has a metrical tensor of the following form:
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Appendix B

First, find the velocity field � generated by sources with density

Q(σ,ψ, θ)¯ δ(σ®1) eimψ+inθ, (B 1)

where δ(x) is Dirac’s delta-function. The velocity field in the region σ" 1 is expressed
through the source density Q as

�¯¡Φ, Φ¯®
1

4π&
Q(r«) dr«
rr®r«r

. (B 2)

The magnitude of the radius vector from the point of integration r« to the point of
observation r is written

rr®r«r#¯R#
c
(1®µ

c
d ) (1®µ

c
d «) [2(1®cos (θ®θ«))γ#], (B 3)

γ#¯µ#
c

(h®h«)#(d®d «)#
(1®µ

c
d ) (1®µ

c
d «)

, (B 4)

where d, h are the Cartesian coordinates in the ring cross-section plane, d¯ ρ
c
cosφ

c
,

h¯ ρ
c
sinφ

c
, µ

c
¯µR}R

c
, R is the distance from the ring axis to the stagnation point
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in the ring cross-section, R
c
is the distance from the ring axis to the centre of the vortex

core, R}R
c
¯ 1(5}8)µ#O(µ$). The polar coordinates ρ

c
and φ

c
are associated with

the ring cross-section centre. The use of these coordinates seems to be convenient for
calculating the integral (B 2). Substituting (B 3) into (B 2) we get for the density of
(B 1)

Φ¯®
R einθ

2πR
c
(1®µ

c
ρ
c
cosφ

c
)"/#&
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!

&#
π

!

δ(σ«®1) eimψ« P(σ,ψ,σ«,ψ«)σ«dσ«dψ«
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c
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c
)"/#

, (B 5)

where

P¯&
π

!

cos nαdα

[2(1®cosα)γ#]"/#
. (B 6)

The integral P can be expressed for any n through the sum of elliptical functions
(Gradshteyn & Ryzhik 1980). To obtain an asymptotic expansion of the integral P in
the parameter µ it is possible to use this sum. Each term of the expansion of the integral
P in µ in such a representation is a series of corresponding terms in the expansion of
each elliptic function. However, the summing of these series is a very cumbersome
procedure. For the first two terms in µ a more simple way appears to exist. To this end,
we divide the integration region into two parts : 0%α! c and c%α!π, where c is
an arbitrary constant with the value µ' c' 1. In accordance with this separation
the integral (B 6) is presented as a sum of integrals over each of these regions, i.e.
P¯P

"
P

#
. The integrand in P

"
is expanded in α' 1. On integrating we get
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The integrand in P
#

is expanded in γ' 1. On integrating we get
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Let c¯O(µp), 1}2! p! 2}3. Then adding (B 7) and (B 8) we get
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where q" 2.
Substituting (B 10) into (B 5) and integrating over σ« and ψ« we obtain the velocity

potential in the region σ" 1:
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(B 11)



Vortex ring eigen-oscillations as a source of sound 53
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The multiplier exp(inθ) is not written out further for brevity.
The velocity field �¯¡Φ. Hence we get
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where V is the σ-component of the field � at the boundary σ¯ 1.
Secondly, find the velocity field � generated by the axisymmetrical vorticity :

Ωσ ¯ 0, Ωψ ¯ 0, Ωs¯ δ(σ®σ
!
) eimψ, (B 14)

where σ
!
% 1, δ(x) is Dirac’s delta-function. This task is similar to the previous one.

The velocity field in the region σ" 1 is expressed as follows:

�¯¡¬A, A¯
1

4π&
Ω(r«) dr«
rr®r«r

. (B 15)

Substituting (B 3) into (B 15) we obtain for the covariant component:

A
s
¯

R(1®µ
c
ρ
c
cosφ

c
)"/#

2πR
c

¬&"

!

&#
π

!

δ(σ«®σ
!
) (1®µ

c
ρ!
c
cosφ!

c
)"/# eimψ« P(σ,ψ,σ«,ψ«)σ«dσ«dψ«, (B 16)
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where

P¯&
π

!

cosαdα

[2(1®cosα)γ#]"/#
,

γ is determined by (B 4). Using (B 10) and integrating over σ« and ψ« we obtain the
value of A

s
. The velocity field �σ ¯ (1}σ) ¥A

s
}¥ψ. Hence we get at σ¯ 1

V¯ "

#
iσ

!
eiψiµ[&

)
σ
!
®1}σ

!
]σ#

!
e#iψO(µ#), m¯ 1, (B 17a)

V¯ "

#
iσm

!
eimψiµ 93m2

8
σ
!
®

(3m1) (m1)

8m

1

σ
!

:σm+"
!

ei(m+")
ψ

®iµ
(2m®1)

8m
σm

!
ei(m−")

ψO(µ#), m& 2, (B 17b)

where V is the σ-component of the field � at the boundary σ¯ 1.
The results obtained in this Appendix are readily generalized for the case m%®1 by

complex conjugation and the simultaneous replacement mU®m.

Appendix C

The basic displacements are the particular solutions of (4.10). Let n& 1, and
frequency ω¯ l}2ω«, where ω«%O(µ), l& 2. The system of basic displacements is
chosen in the form

εσ

(l)
¯ i 9® lω«

µnσ
(1®ω«) J

l
(a)®ω« J

l+"
(a)O(µω«): eilψ

i 9(l®1) (3l®2)
ω«$

µn#σ
J
l−"

(a)®(l®1)
ω«#
2n

J
l
(a)O(µω«#): ei(l−")ψ

i 9®(l1) (3l2)
ω«$

µn#σ
J
l+"

(a)(l1)
ω«#
2n

J
l
(a)O(µω«#): ei(l+")ψO(µω«#),

(C 1a)

εψ

(l)
¯ 9 lω«

µnσ#

(1®ω«) J
l
(a)®

1

σ 01
21

16

lω«
n#
1 J

l+"
(a)O(µ#): eilψ

9®(l®1) (3l®2)
ω«$

µn#σ#

J
l−"

(a)
µω«
2

J
l−"

(a)
(5l®3)ω«#

2nσ
J
l
(a)O(µ#ω«):

¬ei(l−")ψ

9®(l1) (3l2)
ω«$

µn#σ#

J
l+"

(a)
µω«
2

J
l+"

(a)
(5l3)ω«#

2nσ
J
l
(a)O(µ#ω«):

¬ei(l+")ψO(µ#ω«), (C 1b)

εs
(l)

¯ J
l
(a) [1O(µ#)] eilψ[2ω«µσJ

l
(a)O(µ#ω«)] ei(l−")ψ

®[2ω«µσJ
l
(a)O(µ#ω«)] ei(l+")ψO(µ#ω«), (C 1c)

where

a¯
µnσ

ω« 91
21

16

lω«
n#


163

192
µ#σ#O(µω«,µ$): .
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The different harmonics in (C 1) are calculated with different accuracy. The values
of rejected terms in the lth and (l³1)th harmonics are presented in square brackets.
The rest of the harmonics have values of no greater than O(µω«#) for the σ-component
and less than O(µ#ω«) for other components. Notation of this type will be also used
below:

εσ

(l+")
¯ 9σlµ#0(7l #21l®2)

64(l2)
®

(3l5) n#

4(l2) (l1)1σl+#O(µ$,ω«#): ei(l+")ψ

®9µ 2l3

4(l1)
σl+"O(µ#): ei(l+#)ψ®9l(3l2)ω«

2n#µ
σl−"

(2l1)

2(l1)
µσl+"

O(µ#,ω«): eilψO(µ#), (C 2a)

εψ

(l+")
¯ i 9σl−"µ#0(l3) (7l #21l®2)

64(l1) (l2)
®

(3l7) n#

4(l2) (l1)1σl+"O(µ$,ω«#): ei(l+")ψ

®i 9µ 2l3

4(l1)
σlO(µ#): ei(l+#)ψi 9®l(3l2)ω«

2n#µ
σl−#

l

2(l1)
µσl

O(µ#,ω«): eilψO(µ#), (C 2b)

εs
(l+")

¯®i 9 µn

l1
σl+"O(µ#): ei(l+")ψ®i 9(3l2)

2n
σlO(µ): eilψO(µ#) ; (C 2c)

εσ

(m)
¯σm−" eimψO(µ),

εψ

(m)
¯ iσm−# eimψO(µ), εs

(m)
¯O(µ), m& 1, m1 l, l1;

5

6

7

8

(C 3)

εσ

(m)
¯σrmr−" eimψO(µ), εψ

(m)
¯®iσrmr−# eimψO(µ), εs

(m)
¯O(µ), m%®1; (C 4)

εσ

(m)
¯σ ei!ψO(µ), εψ

(m)
¯®i

2

l
ei!ψO(µ), εs

(m)
¯ i

2

µn
ei!ψO(1), m¯ 0. (C 5)

The basic displacements at l¯ 1 are described by (C 1)–(C 4), the only difference
being a different expression for ε

(!)
and more precise evaluations of the zero harmonic

of the σ-components. That is

εσ

(!)
¯ [µO(µ#)] eiψ®[µ#n#σO(µ$)] ei!ψO(µ$), (C 6a)

εψ

(!)
¯ i 9µ 1

σ
O(µ#): eiψi[2n#µ#O(µ$)] ei!ψO(µ$), (C 6b)

εs
(!)

¯®i2nµ ei!ψO(µ#) ; (C 6c)

εσ

(")
¯ i 9® ω«

µnσ
(1®ω« ) J

"
(a)®ω« J

#
(a)O(µω«): eiψi[®2µω«#σJ

#
(a)O(µ#ω«#)] ei!ψ

i 9®10ω«$
µn#σ

J
#
(a)

ω«#
n

J
"
(a)O(µω«#): ei#ψO(µω«#), (C 7)

εσ

(#)
¯ 9σµ#013

96
®

n#

3 1σ$O(µ$,ω«#): ei#ψ®9µ5

8
σ#O(µ#): ei$ψ

®9 5ω«
2n#µ


3

4
µσ#O(µ#,ω«): eiψO(µ$) ei!ψO(µ#), (C 8)

εσ

(m)
¯σrmr−" eimψO(µ#) ei!ψO(µ), m1 0, 1, 2. (C 9)
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The basic displacements at l¯ 0 are described by (C 1)–(C 4). However, we shall use
more precise evaluations for displacements ε

(³")
. These displacement fields are

εσ

(³")
¯ 91µ# 0® 1

64
®

5

8
n#1σ#O(µ$): e³iψ®9µ3

4
σO(µ#): e³

#i
ψ

®912µσO(µ#): e!iψ9µ#
3

32
σ#O(µ$): eyiψO(µ#), (C 10a)

εψ

(³")
¯³i 91σµ#0® 3

64
®

7

8
n#1σO(µ$): e³iψyi 9µ3

4
O(µ#): e³

#i
ψ

O(µ#) e!iψyi9 9

32
µ#σO(µ$): eyiψO(µ#), (C 10b)

εs
(³")

¯®i[µnσO(µ#)] e³iψ®i 91nO(µ): e!iψO(µ#). (C 10c)
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